博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
UVa 10943 - How do you add?
阅读量:5278 次
发布时间:2019-06-14

本文共 1679 字,大约阅读时间需要 5 分钟。

Description

Larry is very bad at math - he usually uses a calculator, which worked well throughout college. Unforunately, he is now struck in a deserted island with his good buddy Ryan after a snowboarding accident. They're now trying to spend some time figuring out some good problems, and Ryan will eat Larry if he cannot answer, so his fate is up to you!

It's a very simple problem - given a number N, how many ways can K numbers less than N add up to N?
For example, for N = 20 and K = 2, there are 21 ways:
0+20
1+19
2+18
3+17
4+16
5+15
...
18+2
19+1
20+0

Input

Each line will contain a pair of numbers N and K. N and K will both be an integer from 1 to 100, inclusive. The input will terminate on 2 0's.

Output

Since Larry is only interested in the last few digits of the answer, for each pair of numbers N and K, print a single number mod 1,000,000 on a single line.

Sample Input

20 2

20 2
0 0

Sample Output

21

21

Resume

将N分解成K个非负整数之和的方案数。

Analysis

  • 思路一:
    高中组合数问题,通过隔板法可得答案为 \({C_{n+k-1}}^n\) 种。
  • 思路二:
    动态规划,转移方程为\[d[i][j] = d[i-1][j] + d[i][j-1] \]其中 \(d[i][j]\) 表示将\(i\)拆分成\(j\)个数的方案总数。

Code(Measure One)

////Target: UVa 10943 - How do you add?//@Author: Pisceskkk//Date: 2019-2-16//#include
#define N 220#define mod 1000000#define ll long longusing namespace std;int n,k,f[N][N];int dfs(int a,int b){ if(a < b)return 0; if(b == 0)return 1; if(a == 0)return 1; if(f[a][b])return f[a][b]; return f[a][b] = (dfs(a-1,b-1)+dfs(a-1,b))%mod;}int main(){ while(1){ scanf("%d %d",&n,&k); if(!n && !k){ break; } printf("%d\n",dfs(n+k-1,n)); } return 0;}

转载于:https://www.cnblogs.com/pisceskkk/p/10421427.html

你可能感兴趣的文章
每天一个linux命令(1):ls命令
查看>>
根据xml生成相应的对象类
查看>>
查看ASP.NET : ViewState
查看>>
Android StageFrightMediaScanner源码解析
查看>>
vue项目中开启Eslint碰到的一些问题及其规范
查看>>
循环队列实现
查看>>
CSS层模型
查看>>
springBoot 项目 jar/war打包 并运行
查看>>
HDU 1501 Zipper
查看>>
打包java程序生成exe
查看>>
八叉树
查看>>
poj 1129 搜索
查看>>
Git 远程仓库
查看>>
HttpClient的巨坑
查看>>
关于静态文本框透明度的问题
查看>>
海量数据、高并发的优化方案
查看>>
javascript的发展及个人笔记
查看>>
全选,反全选,反选,获取选中的值,根据子选择控制全选按钮
查看>>
梦断代码读后感01
查看>>
[CF#250 Div.2 D]The Child and Zoo(并查集)
查看>>